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J. Phys.: Condens. Matter 3 (1991) 6989-6999. Printed in the UK 

Electron transport through planar defects: a new 
description of grain boundary scattering 

A KnHbchen 
Institut f i r  Theoretische Physik der Technischen Universitgt Chemnitz, 
Reichenhainer Strasse’lO, Chemnitz, D-9010, Federal Republicof Germany 

Received 4 March 1991 

Absbact. Based on a recently developed superposition method, the resistance of a homo- 
geneous bulk material perturbed by a planar defect is calculated. A detailed analysis of 
the evolving residual-resistivity dipole surrounding the layer is given. Transmission and 
resection of attenuated propagating waves on planar defects describe the essential features 
ofgrain boundaryscattering. In thismnneaionour resultcan bemmparedwithexpetbental 
data and well known theories on polycrystalline metals. 

1. Introduction 

Electronic transport in materials containing defects is accompanied by strong inhomo- 
geneities in the microscopic electric field and the carrier density. For the first time 
Landauer studied the nature of these inhomogeneities. In his 1957 paper [I] he pointed 
out that the transport field arising from a scatterer is a highly localized dipole field 
called the residual-resistivity dipole (RRD). The formation of the RRD is the microscopic 
mechanism which yields the voltage drop across the scatterer. For a one-dimensional 
(ID) system, a careful investigation leads straightforwardly to the well known Landauer 
formula (LF) [I, 21. This formula predicts a resistance proportional to R/(1 - R) where 
R is the reflection coefficient of the scatterer. 

Besides localized scatterers in the ID and 3D bulk, in his paper mentioned above, 
Landauer considered the influence of planar defects on the electronic flow. On the one 
hand, this problem corresponds closely to the simpler case of a perturbation in a ID 
system because the electrons cannot detour around the scattering obstacle. It can be 
shown, d below, that such behaviour causes a denominator (1 - R)-I in the resistance, 
quite similar to the LF. On the other hand, the treatment of carriers propagating in the 
3~ bulk is more complicated and constitutes a step towards experimentally realized 
situations. For instance, contact resistances can be considered as an example of partly 
reflecting planar perturbations [3]. 

Planar defects are widely used as a simplified model system for grain boundaries. 
Their description by smooth and short-range potentials seems to be justified [4]. As far 
as we know, all calculations concerning grain boundaries have been carried out on the 
basis of classical or semiclassical transport concepts, i.e. the Boltzmann equation has 
been complemented by an independently determined collision or source term [4-81. 
The authors of [4-71 have calculated a collision term and a corresponding relaxation 
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6990 A Knabchen 

time. The deviations of the different approaches are more or less a matter of taste and 
characterize the difficulties arising from a semiclassical hybrid treatment of localized 
perturbations. Especially the combination of both grain boundary scattering and uni- 
form background scattering to an effective mean free path or relaxation time requires 
additional assumptions that cannot be proved within the scope of a classical theory. 
Finally we note that the results mentioned do not confirm Matthiessen’s rule, according 
to which the total resistance should be the sum of all individual resistances, i.e. (here) 
of a bulk and a grain boundary contribution. On the contrary, our result does satisfy 
Matthiessen’s rule (cf the discussion). 

The treatment of the grain boundary by Sorbello [8] is related more closely to 
the original ideas of Landauer. He considers an impurity layer or grain boundary, 
sandwiched between reservoirs, and gives its resistance for a weakly scattering layer. 
His local-field method employs different concepts for the near- and far-field regions. A 
carrier density perturbation due to the quantum-mechanical scattering of electrons at 
the grain boundary describes the near-field region. For r S- I ,  where I is the mean free 
path (m) in the bulk, a Boltzmann equation completed by a source term is solved. In 
the source term the information on the location of the layer is retained whereas the 
conventional transport approach uses only the ensemble-averaged transition probability 
in the collision term. 

Our method to handle the problem is different from all these [I, 4-81 and has the 
advantage that the interplay between coherent propagation and incoherent transport 
away from the defect are incorporated simultaneously. Thus our method, which we call 
the superposition method (SPM), connects both processes already included in the local- 
6eld method and puts them on a unified mathematical basis. In the following we shall 
use t h e s p ~  in itsrecently developed approximate form. This formalism isanappropriate 
tool for systems where, in principle, an obstacle of arbitrary strength, shape and size is 
superimposed on a weakly scattering background, i.e. the MFP 1 within the ensemble of 
disordered background scatterers is large compared with the wavelength A of electrons. 
The smallness of the parameter A/ l  is the main assumption for the validity of the SPM 
applied. For good bulk conductors, e.g. metals, A/L < 1 holds. 

Concerning the problem under consideration, the only condition that we set is that 
the width of the layer is small compared with the MTP. This permits later on an essential 
mathematical simplification. Because of the proposed weak background, however, the 
layer need not be thin on the A scale. 

It is worth emphasizing that the defect plane is allowed to scatter the electron waves 
strongly. The possibility of treating strongly reflecting wallsis a substantial improvement 
and makes a perturbational treatment [4] or similar ideas [SI superfluous. Some work 
[4-6] is practically limited from the very beginning to weakly scattering defects although 
the corresponding resistivity formulae have been evaluated in the whole range. On the 
basis of Landauer’s results [l] for a ID system one expects here a solution characterized 
bytheR/(l - R)structure, too. Even forastrongdefect the existenceofanenhancement 
factor (1 - RI-’ and its exact form can be derived. Hence we are able to generalize 
Sorbello’s result in this respect. 

The SPM can be applied to the mobility case with a driving force or to the diffusion 
case with a constant carrier density gradient. The latter is mathematically much simpler 
and will be used in the following. This decision is only a formal matter because it is well 
known how to go from diffusivity to conductivity via the Einstein equivalence. For a 
point-like impurity both cases have been treated in parallel and compared in detail [9]. 

In section 2 a short summary of the SPM, adjusted to our purposes, is given based on 
a more detailed explanation in [2 ] .  In sections 3 and 4 we construct, in a two-step 



Electron lransport through planar defects 6991 

procedure, the solution in the diffusion picture. Then, in section 5, we perform the 
transformation from the diffusion to the force case, i.e. the density pile-up surrounding 
the planar defect passes into a voltage drop. For a granular material consisting of grains 
with a mean size or diameter D ,  the resulting conductivity will be determined on the 
condition that D 2- f where our solution for a single grain boundary is not affected by 
the presence of other ones. A comparison of our formula with results already known is 
made. Further discussion is given in section 6. 

2. Superposition method 

A stationary diffusion current in a homogeneous bulk material is related to a constant 
carrier density gradient. Under the combined action of current flow and additional 
perturbation, the density p(r) can be expressed according to [2] as p(r) = p(r) + 6p(r). 
The carrier distribution p has the property 

Far from the obstacle the densitygradient reaches a given value, grad p ,  and the density 
of states, which is proportional to Im G(r, r) ,  approaches its unperturbed bulk value. 
Hence,gisgivenbygrad p/im Gband thepartpyieldsalready the asymptoticallycorrect 
density gradient. Therefore, 6p(r) represents the current-induced carrier redistribution 
due to the obstacle. This latter part obeys in the same approximation as in [2] an integral 
equation 

6p(r) = pind(r) + (Im k 2 / h  Gb)  I d3r' IC@, r')12 6p(r'). (2) 

G is the one-particle Green function in a simple medium approximation 

[A + k2 - (2m/ti2)V(r)]G(r, r') = -S(r - r') (3) 
where k = k' + ik" denotes the medium wavenumber. Its imaginary part K' = (21)-' 
follows from the disordered background scatterers andis responsible for the attenuation 
of the coherent wave field [lo]. In equation (3) the potential V(r) describes quite 
generally an obstacle and/or a confinement disturbing the propagation process. 
For convenience, G = G, + G, is decomposed into an unperturbed bulk term 
Gb(r,r') =exp(i l r -  f l l ) / (4z l r -  81) andascatteringpart G,. 

The scattering of electrons incident at an obstacle or defect produces a current- 
induced coherent density change pind(r), which reads 

Piod = P 1  + P2 

with 

a 
pl (r )  = 2g d3r' Im G;(r, r') 7 ar Gb(r, i")) I (  ( 4 4  

(46) 
a 

p2(r) = i9 I d3r' G d r ,  4 7 G 3 r ,  r'). 

Since pied is subject to a multiple scattering process in the bulk, which destroys phase 
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relations, the coherent density is attenuated and localized within a few MFP around the 
defect. Corresponding to equation (2), pmd acts as an initial distribution for a classical 
transport process to follow. Asymptotically, this is classical diffusion [ll]. However, 
only the pure bulk term IGb12 in the integral on the right-hand side of (2) is responsible 
for the long-range behaviour of the diffusive solution 6p(r). Nevertheless, there are two 
furthercontributionswithG,orIG,Iz,respectively. Thusadefect actstwofold: it yields 
a coherent density perturbation and influences the following diffusion process. 

Finally we notice that in (2) and (4) the regions of the added defect can be neglected 
in the integrals over r'. This approximation is justified because the MFP determines the 
length scaleof the regions that contribute significantly. As noted above, the width of the 
layer should be small compared with 1. If we neglect the waves emerging primarily from 
that region we have, in principle, no background scatterers within the obstacle. 

Tosummarize, onecansay that thes~~dividestheprobleminto twoseparatedones: 
determination of the coherent density change (4) occurring in the vicinity of the defect 
and solution of a modified transport problem (2), which yields a delocalized diffusive 
behaviour of the total density redistribution 6p. The next two sections are devoted to 
them. 

, 

3. Induced density 

3.1. Green function G, 

We use cylindrical coordinates (R, q, z), where the z axis is normal to the planar defect. 
Since the scattering potential is independent of R and q, and non-zero within a layer 
(around z = 0) only, the scattering properties can be specified in terms of coefficients 
R(B) and T(e) for specular reflectionand transmission, respectively. (Toavoid potential 
misunderstanding the reflection coefficient R(B) is written with an argument, at least 
when the coordinate R appears.) Here B is the angle of incidence, and R(0) + 
T(B) = l.Ifwechooseronthezaxis,i.e. R =O,theGreenfunctionG,canbewritten 
outside the defect as 

G&, r') = [f(t?-) - 1]Gb( [R" + (Z - Z')2]'/2) E [ t ( O - )  - 1]Gb 

G=(r,r') = r, , ,(B+)Gb([R" + ( z  + z ' ) ~ ] @ )  =r,,JB+)G$ 

(54 

for sgn(z) # sgn(r') and 

(56) 

for sgn(z) = sgn(z'), where If(e)12 = T(B) and lr,,,(-9)lz= R(B).  The amplitudes q,, 
characterize reflection from the left-hand or right-hand side of the potential. The angle 
is given by cos = (z * z')/[RfZ + (z & z ' ) ~ ' ~ .  The Green function G, in (5a) cor- 
responds to transmitted wavespropagatingfrom a point rto point r'. The Green function 
G, in (56) describes the reflection case where a fictitious mirror source at the point -r 
appears. 

Outsidethe potentialsheet G,obeysthehomogeneouswaveequation(A + kz)G, = 
0 (cf (3)). It can be shown that our solution (5) fulfils it up to higher-order terms in 
{k'[R'* + (z & z ' ) ~ ] ' / ~ } - ' ,  which are negligible in the relevant region. 
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3.2. Calculation of the induced density 

The Green functions Gb and G,, are independent of the variable rp. Hence, only the L 
component of the derivative yields non-vanishing terms in (4). We employ the approxi- 
mation 

(6) 
a - G,lb = t i k ‘  cos 0: GSclb 

azi 

for k’[R’* + (z f z ’ ) ~ ] ’ / ~  * 1, suppressing the small imaginary part K ,  too. The induced 
density part p1 is now given by 

p ,  = -2k’g.iRe ] (G,’)* cos 6 -  G; (7) 

where J’+/-dz’ . . . is restricted to values z‘ with sgn(z’) equal/unequal to sgn(r) and 
JdA’ = JdR‘ R’ dq’. Besides the phasecompensating term IG;lZ in equation (7) there 
is an oscillatory interference term -r*(Gb+)*G; due to the reflected waves. Its very 
existence is a consequence of our non-classical procedure, although it causes only 
densitycorrectionslocalizedwithm some wavelengthsaround thedefect andis therefore 
negligible compared with the smoth contributions. Remember that in the corresponding 
ID case with a scatterer the oscillatory density terms dominate the near-field region 
( ( z  1 5 r) for a weak scatterer [Z]. Generally they are irrelevant for all integral features, 
especially for the induced dipole moment, which determines the asymptotic solution of 
the diffusion process. The difference between the grain boundary and the ID case 
emphasizes the significance of dimension. 

With the remaining part of (7) and p2 we immediately obtain 

or, after integration over L’, 

pind(z) = X‘lg.tsgn(z) IGb12R(e) cosze. 
(f=0) 

The latter formula i s  very suggestive. In case of current flow, each point on the defect 
sheet acts as a source of a spherical wave. The superposition of their intensities weighted 
by the reflection coefficient yields the coherent density. The product dA’ cos B measures 
the effective area of radiation for each angle 8. We note that such a cos 0 dependence 
is known as Lambert’s law [17]. The second cosine can be related in a more classical 
picture to the distribution function of those incident particles which form the induced 
current. This current is orientated in the z direction and redistributes carriers around 
the planar defect generating the coherent density. 

According to (8) there exists a density pile-up in front of the layer and a deficiency 
behind it, forming the typical coherent density dipole. This agrees exactly with the 
concept one has in mind if a current is hindered by an obstacle. Owing to the scalar 
product between the density gradient (-g) and the normal vector& pind depends on the 
direction of Current flow. Particularly, there is no effect when current and planar defect 
are parallel to each other in accordance with the presupposed specular reflection. 
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Consider the asymptotic behaviour, IzI % 1. Contrary to the near-field region where 
nearly all angles contribute, the induced density is now given by 

pind(z) =lgradP . tsfl(z)R(o)(l/lzl) exp(-lzl/l) (9)  

to the lowest order of l/lzl Q 1. Besides the exponential attenuation, pind decreases as 
1z 1-l because for larger distances from the defect only waves in a narrow cone around 
e =  0 reach pointrwith notable amplitudes. Consequently, the retlectioncoefficient for 
normal incidence, R(O), governs the coherent field. This different behaviour in the near 
and far regions is a feature of the planar arrangement. 

In the next section we wiU need the dipole moment of the induced density. It reads 
with (8) 

+- I 
plnd = I-, dz ZPind(Z) = i3 grad p * e  d COS 0 lcos301R(B) I, (10) 

where the mentioned dominance of small angles is revealed in a higher power of cos 0. 

4. Total density 

With regard tothe potentialdropacrossthelayer we areonlyinterestedin theasymptotic 
solution of the integral equation. Since our m u t z  p already yields the required density 
gradient the total density has to be asymptotically ( 121 S l )  a dipole distribution, namely 

= Cspn(z) (11) 
where Cis an unknown constant. We remark that in contrast to the ID and 3~ systems 
with an added scatterer [2], 6p (11) does not correspond to the induced density (9) 
without a damping factor. The evaluation of C via Fourier transformation is straight- 
forward because the oscillatory term (Cf)*G; in the integral kernel in (2) can be 
neglected (cf discussion of equation (7)). The remaining contributions can be treated 
like convolution integrals. After some manipulations (see appendix) we obtain C as 
determined by dipole moments as follows: 

C = pin&[ sgn(z) - I d3JIG(r, r')I2 sgn(z')] 

6p(z) = 1 grad p 9 sgn(z) I d COS 0 lcos 3sl~(e) /J-~ dCOseCos2e qe).  

(12) 

wherep[. . . ]  = Jrm dz z [ .  . .]denotesthecalculationofthedipolemoment.Combining 
equations (11) and (12), and the induced dipole moment (lo), we finally get the total 
density in the far-field region as 

I I 

(13) 
- I  

The density difference between both sides of the layer or grain boundary is given by 

IApI =2llgradp-t l%/F (14) 
where3 and Trepresent the angle integralsoverR(0) and ne), respectively, according 
to equation (13). We emphasize that Ap is superimposed on the bulk density gradient 
and associated with the extra resistance due to the planar defect, d next section. 
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Our result (14) yields the density pile-up caused by the defect and generalizes the 
solution of the corresponding ID system [Z]. In accordance with it and the LF the typical 
'%/T structure is reproduced in IApI characterizing a scattering object that cannot be 
circumvented by carriers. In fact, this structure guarantees immediately the correct 
behaviour in the two limits of very small and very large R(6'). First, for small reflection, 
Ap has to be determined by the part R of carriers which are scattered back from the 
layer into the bulk. Secondly, for large reflection coefficients, the planar defect hinders 
to a high degree the diffusive recombination of excess and deficit carriers forming the 
RRD and, therefore, effects due to repeated interaction of the particles with the extended 
obstacle become important. In the ID case these processes lead to a factor (1 - I?)-' 
already discussed by Landauer [l] and here to the more complicated denominator in 
(14). The denominator ensures IApI + m for impenetrable obstacles. 

The solution (14) for the density change across a planar defect can be applied to 
an arrangement of parallel and sufficiently separated planar defects. On condition 
that their mutual distance D is much greater than the MFP (or strictly speaking that 
exp( -D/[) 4 1) the carriers undergo during propagation between successive defects an 
additional scattering in the background. Such scattering events destroy the previously 
accumulated phase. Consequently, the planar defects in this case act on the electronic 
flow independently of each other. Therefore we find the resulting density pile-up simply 
asamultipleof thevalue (14). Inother words,foralatticeofdefectsorgrain boundaries 
with mean distance D, on average an additional density gradient appears which is 
proportional to lApl/D. 

5. Conductivity 

We now translate our result into the common picture where a current is driven by a 
constant electric field. According to [Z], the long-range diffusion dipole (13) is related 
to a potential drop established within a microscopic screening length around the layer. 
Then, combined with the current, the extra resistance arising from aplanarperturbation 
follows. Guided by the considerationsof Lenk [Z], we deduce immediately that a lattice 
of defects with interplanar spacing D changes the conductivity of an otherwise uniform 
sample to 

U/Ub = [I + 21% lcos BI/(DT)]-l (15) 
whereu, = e2nZ/mudenotesthe bulkconductivityandBistheangle between thecurrent 
direction and the layer normal. To obtain equation (15), we have assumed a degenerate 
electron gas; all values are taken at the Fermi energy. 

As equation (15) indicates, both scattering mechanisms contribute independently to 
the resistivity, i.e. there are pure bulk and defect-induced terms. The latter depends, as 
discussed above, linearly on the density of defects, D-'. Thus we can describe the 
perturbed bulk with a resulting MFP, ICE, according to 

1;: = 1 - 1  + 2lcos a l 9 / ( D s ) .  (16) 
The additivity of all individual resistivities or reciprocal MFP is sometimes called 
Matthiessen's rule. In contrast to a classical treatment, this rule appears here not as an 
assumption but asa  result. 

Formula (15) holds for arbitrarily strong reflecting but widely separated, 
exp(-D/[) 4 1, defects. These conditions are realized in coarse-grained materials. 
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Relevant experimental data conlinn qualitatively our result [12]. We mention that for 
very large grains D+ m the contribution of the grain boundaries to the resistivity 
becomes negligible in agreement with equation (15). In the limit of small reflection, 
R(0) -=3 1, we replace T(B) in the denominator T by 1 and obtain 

Note that thisequation,for thespecialcase 6 =  0,canbealreadyderivedfromSorbello’s 

To compare our result with other formulae we choose the simplest case of a weak 
angle dependence in equation (15), R(8)  = 1 - T(e) = const = R = 1 - T,  where R 
and Tare introduced to expresssome average propertiesofthe boundaries. Furthermore 
we set cos 6 = 1 for a system where the electric field is applied perpendicular to parallel 
and planar grain boundaries and a= 112 for an isotropic polycrystalline bulk 
material with randomly orientated grains. Carrying out the integration over cos 6 this 
leads to 

paper PI. 

uL/ub = (1 + 3a/2)-’ a = lR/DT (W 
and 

Ui/Ub = (1 + 3a/4)-’ 
respectively. A parameter a as defined in (18) also appears in other considerations of 
polycrystalline metals, namely in a model proposed by Mayadas and Shatzkes (MS) [4] 
and in calculations performed by Warkusz (w) (61. In figure 1 the dependence of the 
reduced grain boundary conductivity on a is shown according to MS (equation (10) in 
[4]), w (equation (16) in [6]) and equations (18). One can see that the calculated 
conductivities tend to the monocrystalline one if the crystal diameter or interplanar 
spacing D is much greater than the MI? of the electron I (a l), and vanish if R-b 1 
( (US 1). The curves of the MS formula and equation (18a) and of the w formula and 
equation (186). respectively, are similar and they have the same Limiting forms for small 
a. However, the model developed by w cannot be related exactly to our assumption 

Fire 1. ?be reduced grain boundary con- 
ductivity a/abversus e. Broken curves: w model 
(upper curve). MS model (lower curve). Full 
curves: equation (18b) (upper curve), equation 
(1&) (lowercurve). 

) 
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leading to (18b) and therefore this similarity is somewhat surprising, whereas the cor- 
respondence with the MS result is not unexpected. These authors also treat the problem 
where a series of partially reflecting and transmitting planar grain boundaries per- 
pendicular to the direction of the electric field act simultaneously with isotropic back- 
ground scattering. In fact, the curves coincide when the grain boundary scattering is 
weak (a4 1) but the relative deviation between the hts result and equation (18a) 
increases as T decreases. This is easy to understand by keeping in mind that the per- 
turbationmethodusedby~sisnotvalidforsmall Tvalues. Nevertheless, the~ssolution 
represents a good approximation to our expression (18a). We deduce that when many 
experiments on the conductivity of polycrystalline metal films have shown reasonable 
agreement with the MS model, the data can also be described by applying the proposed 
model, and values of the retlection and transmission coefficients can be extracted. 

6. Discwion 

In this paper we have dealt with the carrier density and field inhomogeneities arising 
from a planar defect in a current-carrying bulk material. The calculations are tractable 
within the framework of the superpositon method, which represents a completely 
formalized non-classical transport theory, and which is described in section 2. In the 
neighbourhood of the defect whose thickness remains small compared with the m 
within the background, an RRD appears. Its magnitude is given by equation (13) in the 
diffusion picture and it contains-in generalization of the LF--~ quotient of angle- 
averaged reflection and transmission coefficients. However, in contrast to Landauer's 
originalconsiderationof the3Dcase [l],both coefficientshave to be averagedseparately. 
In accordance with recent scanning tunnelling microscopy (m) experiments 1131 and 
the former discussion by Landauer, the evolving diffusion dipole corresponds-in a 
charge-compensating bulk-to a voltage drop, which occurs in the immediate vicinity 
(within an electron screening length) of the defect plane. Founded on this solution for 
one defect we delivered the conductivity (equation (IS)) for a series of such partially 
transmittingplanes or grain boundaries with mean spacing D superimposed on isotropic 
background scattering. 

The electrical resistivity U-' comprises a pure bulk term and a grain boundary 
contribution and therefore permits the determination of an effective m, le, (equation 
(16)). without difficulties. Theexistenceofaneffectiveminpolycrystalline metals has 
been discussed for a long time. Landauer was among the first to put forward arguments 
[l] that denied the effective m concept. Theoretical investigations [4-71 based on the 
Boltzmann equation supported this opinion because only limiting forms of the results 
for l /D + 0 show separate contributions to the total resistivity. Experimental data are 
obtained with various methods and fitted to or interpreted with different models. As far 
asoursimplifiedconsiderationsare applicable topolycrystalline metals, an effectivem 
can be defined according to equation (16) for sufficiently spaced (exp(-D/[) 1) grain 
boundaries of arbitrary strength, and our method offers, in retrospect, a relatively 
transparent derivation of it. In experiments with coarse-grained (D > I )  metals [12] a 
linear relationship between U-' and D-' has been found. 

As long as the distance between successive defect planes is greater than some m, 
the propagating electrons are scattered in the background and enter the next obstacle 
with phases that are not determined by previous scattering events at grain boundaries. 
The planar defects act independently of each other and the exact value of the m on the 
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electronic flow. If the distance decreases (D 5 I )  the electrons become sensitive to the 
accurate relation between D, 1 and the wavelength L because in this case coherent as 
well as incoherent wavesundergo amultiple scattering process at defects. Consequently, 
Matthiessen's rule should be violated. The description of such systems, realized in fine- 
grained materials, seems to be very complicated. Analytically, even the treatment of 
partially coherent transmission through two bamers is difficult (see for example 1141). 
Numerically, only the simpler ID problem was studied in [15]. Any classical transport 
theory that dealswith the intensity of transmitted and reflectedelectrons is, in principle, 
unsuitable for the investigation of the case D 5 1. 

The validity of our result can be extended in part to that range. Consider the case 
T= 1. The MFP associated with grain boundaries only (second term on the right-hand 
side of equation (16) measures the distance between successive scattering events, i.e. 
reflections, at these defects and is roughly given by D/(1 - T) B D. If we choose R small 
enough the relation 14 D/(1 - T) holds and our formulae can be used. Explicitly, we 
derive,e.g. fromequation (&)for T =  1 

U / U ~  = 1 - (31/20)(1 - T )  = T3'IzD.  (19) 
On the basis of a great number of experiments, Hoffmann and coworkers [U, 161 stated 
that the conductivity decreases exponentially with the number of grain boundaries per 
MFP,  f / D ,  and proposed an expression similar to (19). We emphasize, however, that a 
conductivity behaviour according to (19) is not only for T =  1 in sufficient agreement 
with experimental data in the range I > D. 
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Appendix. Calculation of C from the integral equation 

Similar to P , " ~ ,  equations (7) and (S), we combine the phase-compensating terms of the 
integral in (2) to 

(Imkz/ImGb)(+ dz'bp(~')(dA'(.IGbi1~[1 -2T(6'+)] + lGb1'). ('41) 

Thetotaldensityisanoddfunction, 6p(r) = -6p(-1) ,  whereasJdA'{. . .}represents 
even functions of the arguments (I -C 2'). In this case the (ID) Fourier-transformed 
expressions of the half-space integral (AI) can be factorized. In the light of the above, 
one can write the Fourier-transformed equation (2) as 

Pi~d(9) = @(q)[l  - F(q)l ( M )  
where F(q)  is assigned to the reduced integral kernel (Im kZ/Im Cb)J dA' IClz. To 
compute the magnitude C (11) we only consider the range q = 0 and replace Sp(q) 
in (A2) by its long-wave part 6p10"g. It is well known that the long-wave component 
is responsible for the asymptotic behaviour in real space, i.e. Gpbng corresponds to 
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Sp(Ir1 PZ), which is given in equation (11). In addition, for odd and exponentially 
localized functions,f(z), the approximation 

m DD 

f ( q )  = IDD dz exp(iqr)f(r) = I-. dr  (1 + iqz * . . . ) f ( r )  dz z f ( r )  = iqp[f] 
-- 

(-43) 
holds. Applying (A3) to (A2) where Sp"'"g(q)F(q) is retransformed into an integral and 
6p'O"g is substituted in real space by Csgn(r) (11) leads to equation (12). 
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